
ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

The new features of Fortran 2008

John Reid, JKR Associates, UK

May 21, 2008

Abstract

The aim of this paper is to summarize the new features of the draft Fortran 2008 standard
(ISO/IEC 2008). We take as our starting point Fortran 2003 (ISO/IEC 2008).

An official extension for enhanced module facilities has been published as a Type 2 Technical
Report (ISO/IEC 2005) and WG5 is committed to include this in Fortran 2008.

For an informal description of Fortran 2003 and enhanced module facilities, see Metcalf,
Reid, and Cohen (2004).

The major proposed extension consists of coarrays for parallel computing. Since the author
has already summarized co-arrays in another WG5 paper (Reid 2008), we refer the reader
to this for details.

This is not an official document and has not been approved by either of the
Fortran committees WG5 or J3.

1

2 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

Contents

1 Introduction 4

2 Submodules 4

3 Coarrays 5

4 Performance enhancements 5

4.1 do concurrent . 5

4.2 Contiguous attribute . 6

4.3 Simply contiguous arrays . 8

5 Data enhancements 9

5.1 Maximum rank . 9

5.2 Long integers . 9

5.3 Allocatable components . 9

5.4 Implied-shape array . 10

5.5 Pointer initialization . 10

5.6 Kind of a forall index . 10

5.7 Allocating a polymorphic variable . 10

6 Accessing data objects 11

6.1 Accessing real and imaginary parts . 11

6.2 Pointer functions . 11

7 Input/Output 11

7.1 Finding a unit when opening a file . 11

7.2 g0 edit descriptor . 12

7.3 Unlimited format item . 12

7.4 Recursive input/output . 12

8 Execution control 12

8.1 The block construct . 12

8.2 Exit statement . 13

8.3 Stop code . 13

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 3

9 Intrinsic procedures for bit processsing 13

9.1 Bit sequence comparison . 13

9.2 Combined shifting . 14

9.3 Counting bits . 14

9.4 Masking bits . 14

9.5 Shifting bits . 15

9.6 Merging bits . 15

9.7 Bit transformational functions . 15

10 Intrinsic procedures and modules 16

10.1 Storage size . 16

10.2 Selecting a real kind . 16

10.3 Hyperbolic intrinsic functions . 16

10.4 Bessel functions . 16

10.5 Tangent function . 17

10.6 Error and gamma functions . 17

10.7 Euclidean vector norms . 18

10.8 Parity . 18

10.9 Execute command line . 18

10.10Location of maximum or minimum value in an array . 19

10.11Find location in an array . 19

10.12Constants . 20

10.13Module procedures . 20

11 Programs and procedures 21

11.1 Empty contains section . 21

11.2 Internal procedure as an actual argument . 21

11.3 Generic resolution by pointer or allocatable attribute . 21

11.4 Null pointer as a missing dummy argument . 22

11.5 Elemental procedures that are not pure . 22

12 Acknowledgements 22

13 References 22

4 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

1 Introduction

Fortran is a computer language for scientific and technical programming that is tailored for
efficient run-time execution on a wide variety of processors. It was first standardized in 1966
and the standard has since been revised four times (1978, 1991, 1997, 2004). The revisions of
alternated between being minor (1978 and 1997) and major (1991 and 2004). WG5 decided
in 2004 that the fifth revision be minor, to follow the pattern and allow time for vendors to
implement Fortran 2003 and users to learn to use it.

The plan adopted in 2004 (see N15901) involved the preliminary choice of significant features
in 2005 and the final choice in 2006. When it came to the crunch, WG5 left some items for J3
to add if it had time. Reductions were made at the 2007 meeting and a further reduction was
made at the February 2008 meeting. It is this version that will be described here.

The full document, N1723, is currently in the process of balloting as a Committee Draft Standard
with a closing date of 31 August 2008. Comments should be submitted through your National
Body and should be based on N1723. We hope this article will be helpful, but it is not an official
document and has not been approved by J3 or WG5.

The schedule, see N1693, envisages some minor technical changes being made at the WG5
meeting in Tokyo in November 2008 in response to comments in the ballots, but no futher
technical changes being made thereafter. WG5 therefore decided that the informal name of
the language will be Fortran 2008, though subsequent editorial polishing and ISO balloting will
mean that it is not published until summer 2010.

We use the convention of indicating the optional arguments of an intrinsic procedure by enclosing
them in square brackets in the argument list. We also use square brackets for other optional
syntax elements.

2 Submodules

Submodules allow the modularization of a large module, possible in Fortran 2003 only by break-
ing the module into several modules, which exposes the internal structure and risks name clashes.
Submodules also allow a module to be separated into the part that defines its interface and the
rest. The submodules may be changed and recompiled without the recompilation of program
units that use it. In this way, time-consuming compilation cascades for very large programs are
avoided.

The submodule feature was defined by a Technical Report (ISO/IEC 2005), with a promise that
its features would be included in Fortran 2008, apart from the correction of any defects. It is
described in Chapter 13 of Metcalf, Reid, and Cohen (2004), so we do not need to describe it
here.

1We refer to ISO/IEC JTC1/SC22/WG5 documents by their ‘N numbers’. They are all available from
ftp://ftp.nag.co.uk/sc22wg5/

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 5

3 Coarrays

Coarrays provide a simple extension to Fortran for parallel programming. The program is
treated as if it were replicated a fixed number of times and each replication is called an image.
An additional set of subscripts provide access from any image to data on another image. Care
has been taken to allow compilers to optimize both execution on an image and communication
between images.

For coarrays, a summary is already available in N1724, so we do not need to describe this here.

4 Performance enhancements

4.1 do concurrent

The do concurrent form of the do loop allows the programmer to state that there are no
data dependencies between the iterations of a do loop and hence enables optimizations such as
vectorization, loop unrolling, and multi-threading. It standarizes different directives that have
been recognized by different compilers for a very long time, with different exact meanings.

The do statement itself becomes

do [,] concurrent forall-header

It uses some of the forall syntax and the resulting do construct has some similarities with the
forall construct, but there are important differences:

• the forall is essentially an array assignment statement, behaving as if all the right-hand
side expressions were all evaluated before any assignments are made, and

• there are less restrictions on the kind of statements that may appear in a do concurrent

construct.

Here is a simple example

do concurrent (i=1:m)

a(k+i) = a(k+i) + factor*a(l+i)

end do

where the programmer knows that there is no overlap between the range of values accessed and
the range of values altered.

The full set of restrictions is

• no return statement appears

• no branch in the construct has a target outside it (e.g. exit is not permitted)

6 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

• all procedures referenced are pure

• there are no references to the procedures ieee get flag, ieee set halting mode, and
ieee get halting mode,

• A variable that is referenced in an iteration was either

– previously defined during the iteration or

– is neither defined nor becomes undefined during any other iteration.

• A pointer that is referenced in an iteration was previously pointer associated during the
iteration, or does not have its pointer association changed during any iteration.

• An allocatable object that is allocated in more than one iteration shall be subsequently
deallocated during the same iteration.

• An object that is allocated or deallocated in only one iteration shall not be deallocated,
allocated, referenced, defined, or become undefined in a different iteration.

• An input/output statement shall not write data to a file record or position in one iteration
and read from the same record or position in a different iteration.

A variable that is defined or becomes undefined by more than one iteration becomes undefined
when the construct terminates. A pointer that has its pointer association changed in more than
one iteration has an association status of undefined when the construct terminates. Records
written by output statements in the loop range to a sequential access file appear in the file in
an indeterminate order.

4.2 Contiguous attribute

Certain optimizations are possible if the compiler knows that an array occupies a contiguous
memory block, which is the case for an explicit-shape, assumed-size, or allocatable array and
some sections of such an array. Many unnecessary operations happen because compilers cannot
determine that a data item will always occupy contiguous memory. For example, contiguous
memory is needed to pass an array to a procedure with an implicit interface. Thus, the mere
use of pointers often results in substantially suboptimal code. Similar optimization problems
exist for assumed-shape dummy arguments.

The contiguous attribute may be declared for a pointer or assumed-shape array, for example,

real, pointer, contiguous :: ptr(:)

integer, contiguous, dimension(:,:) : ary

It can also be specified by a contiguous statement:

contiguous [::] object-name-list

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 7

where the other attributes are specified elsewhere.

The target of a pointer with the contiguous attribute must be contiguous. The actual argument
corresponding to a contiguous assumed-shape array must be contiguous. The actual argument
corresponding to a contiguous pointer array must have the contiguous attribute (so that a simpler
descriptor can be employed).

Other objects that are contiguous:

• a nonpointer whole array that is not assumed-shape,

• an assumed-shape array that is argument associated with an array that is contiguous,

• an array allocated by an allocate statement,

• a pointer associated with a contiguous target, or

• a nonzero-sized array section provided that

– its base object is contiguous,

– it does not have a vector subscript,

– the elements of the section, in array element order, are a subset of the base object
elements that are consecutive in array element order,

– if the array is of type character and a substring-range appears, the substring-range
specifies all of the characters of the parent-string,

– only its final part-ref has nonzero rank, and

– it is not the real or imaginary part of an array of type complex.

An object is not contiguous if it is an array subobject and

• the object has two or more elements,

• the elements of the object in array element order are not consecutive in the elements of
the base object,

• the object is not of type character with length zero, and

• the object is not of a derived type that has no ultimate components other than zero-sized
arrays and characters with length zero.

Whether or not any other object is contiguous is processor dependent.

Contiguity can be tested with the inquiry function is contiguous(a) where a is an array. It
returns a default logical scalar with the value true if a is contiguous and false otherwise. If a is
a pointer, it must be associated with a target.

Arrays in C are always contiguous, so c loc was not available in Fortran 2003 for a pointer
array. This restriction has been removed for cases where the target is contiguous.

8 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

4.3 Simply contiguous arrays

The concept of a simply contiguous array has been introduced for an array that is contiguous
and satisfies additional rules that ensure that it is always contiguous. A section subscript list is
simply contiguous if

• it has no vector subscripts,

• it has no strides,

• all but the last section triplet are colons, and

• any subscript follows all section triplets.

An array designator is simply contiguous if it is

• the name of an array with the contiguous attribute,

• the name of an array that is not a pointer or of assumed shape,

• a structure component whose final part name is an array that has the contiguous attribute
or is not a pointer, or

• an array section that

– does not select a real or imaginary part,

– has no substring range,

– whose final part-ref has nonzero rank,

– whose rightmost part-name has the contiguous attribute or is neither a pointer nor
of assumed shape, and

– either does not have a section subscript list or has one that is simply contiguous.

An array is simply contiguous if and only if it is a simply contiguous array designator or a
reference to a function that returns a pointer with the contiguous attribute.

Fortran 2003 allows a pointer assignment to associate a pointer of rank greater than one with a
rank-one target:

matrix(1:n,1:n) => base(:)

This is extended to simply contiguous targets of rank greater than one, for example,

matrix(1:n,1:n) => base(:,:,i:j,2)

associates the elements of matrix in array element order with the elements of base(:,:,i:j,2)
in array element order.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 9

5 Data enhancements

5.1 Maximum rank

The maximum rank has been increased to 15. In the case of a coarray, the limit of 15 applies
to the sum of the rank and corank.

5.2 Long integers

The processor is required to support at least one kind of integer with a range of 18 decimals, for
example

integer,parameter :: long = selected_int_kind(18)

integer(long) :: la, ll

This will normally be supported with 64-bit integers and is needed to ensure portability of
software designed to run on machines with very large memories (now increasingly common).

5.3 Allocatable components

A recursive type is permitted to be based on allocatable components. Here is a simple example
of a type that holds a stack

type entry

real :: value

integer :: index

type(entry), allocatable :: next

end type entry

Here is how to add a new entry at the top of the stack:

type (entry), allocatable :: top

top = entry (new_value, new_index, top)

Alternative code is as follows:

type (entry), allocatable :: top, temp

temp = entry (new_value, new_index, temp)

call move_alloc(top,temp%next)

call move_alloc(temp,top)

which avoids the possiblity of a deep copy being made into a temporary variable followed by
another deep copy from it. It is reasonable to expect the compiler, when presented with the
first version to perform the equivalent of the second, but it cannot be guaranteed. Similar
considerations apply to the removal of the top entry by the code

top = top%entry

10 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

or

call move_alloc(top%next,temp)

call move_alloc(temp,top)

The usual efficiencies associated with allocatables are available: contiguous arrays, no aliasing
(unless given the target attribute), and no memory leaks.

5.4 Implied-shape array

An implied-shape array is a named constant that is declared with each upper bound given as
an asterisk. It takes its shape from the initialization expression, for example,

integer, parameter :: order(0:*) = [0, 1, 2, 3]

5.5 Pointer initialization

A pointer may be initially associated with a target:

type (entry), target :: bottom

type (entry), pointer :: top => bottom

5.6 Kind of a forall index

The kind of a forall index may be specified in the header:

forall (integer(long) :: i = 1:huge, j = 1:2)

5.7 Allocating a polymorphic variable

An allocate statement can give a polymorphic variable the shape and type of another variable
without copying the value. This is done with mold= replacing source=. For example,

allocate (poly, mold=t2)

allocates the polymorphic variable to have the type and shape of t2.

Intrinsic assignment to an allocatable polymorphic variable is allowed. The variable must be
type compatible with the expression and of the same rank. If it is allocated but the dynamic
type differs from that of the expression, it is deallocated. If it is not allocated or becomes
deallocated, it is allocated with the dynamic type of the expression.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 11

6 Accessing data objects

6.1 Accessing real and imaginary parts

The real and imaginary parts of a complex entity can be accessed independently with a component-
like syntax using the names re and im. For example,

complex impedance, x(n), y(n)

impedance%re = 1.0

x%im = 2.0*y%im

The new syntax allows the parts to be used as variables rather than only within expressions and
makes array sections such as x%im and y%im available.

6.2 Pointer functions

A reference to a pointer function is treated as a variable and is permitted in any variable-
definition context. For example, this function might calculate where to store values depending
on a key

function storage(key) result(loc)

integer, intent(in) :: key

real, pointer :: loc

loc=>...

end function

which would allow a value to be set thus:

storage(5)=0.5

7 Input/Output

7.1 Finding a unit when opening a file

In an open statement, newunit= automatically selects a unit number that does not interfere
with other unit numbers selected by the program, including preconnected files. For example,

integer factor

open (newunit = factor, file = ’factor’, status = ’old’)

which assigns a suitable value to the integer factor.

12 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

7.2 g0 edit descriptor

The g0 edit descriptor specifies that the processor should automatically choose a suitable field
width. For real and complex data, it follows the rules of esw.dee format with the values of w,
d, and e chosen by the processor. For integers, it behaves as i0. For logicals, it behaves as l1.
For characters, it behaves as a.

7.3 Unlimited format item

A list of edit descriptors in parentheses may be preceded by an asterisk, which has the effect of
repeating the list indefinitely, that is, as if it were replaced by a very large integer. For example,

write(10, ’("iarray =", *(i0, :, ","))’) iarray

produces a single record with a header and a comma separated list of integer values.

Note that this feature can be used with g0 format to process I/O lists with various types (or
derived types) present.

7.4 Recursive input/output

It is useful to be able to perform I/O in a subprogram invoked during the processing of an I/O
statement (e.g., for tracing and diagnostic purposes). This is now permitted for an external unit
that is distinct from that of an I/O statement that is in execution (that is, any in the current
call chain).

8 Execution control

8.1 The block construct

The block construct allows entities to be declared and given the scope of the block, for example,

block

integer :: i

real :: a(n)

do i = 1,n

a(i) = i

end do

:

end block

ensures that the do index i and the automatic array a are separate from any other variables
with the same names.

Of course, the block construct must be properly nested with other constructs.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 13

8.2 Exit statement

Some algorithms cannot be expressed in Fortran 2003 without go to statements or extra tests,
but they could be expressed with exit if it could be applied to any labeled construct. Here is
an example using the new block construct (Section 8.1)

outer: block

do i = 1, num_in_set

if (x == a(i)) exit outer

end do

call r

end block outer

Here, no action is needed if x is equal to an element of a; otherwise, r is called.

8.3 Stop code

The optional stop code on a stop statement is limited in Fortran 2003 to a string of one to
five digits or a character constant. This has been extended to any integer or character

initialization expression, available as ever ‘in a processor-dependent manner’. In addition, it is
recommended that

• it is made available by formatted output on the unit error unit of the intrinsic module
iso Fortran env and

• that if it is an integer and the processor supports command line execution (see Section
10.9), it is made available as the exit status value.

9 Intrinsic procedures for bit processsing

9.1 Bit sequence comparison

Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or
all bits have been compared and found to be equal. If unequal bits are found, the sequence with
zero in the unequal position is considered to be less than the sequence with one in the unequal
position. When bit sequences of unequal length are compared, the shorter sequence is considered
to be extended by padding with zero bits on the left. The following elemental functions have
been added. i and j are each of type integer or a binary, octal, or hexadecimal constant.

bge (i,j) returns the default logical value true if and only if i is bitwise greater than or
equal to j.

bgt (i,j) returns the default logical value true if and only if i is bitwise greater than j.

14 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

ble (i,j) returns the default logical value true if and only if i is bitwise less than or equal
to j.

blt (i,j) returns the default logical value true if and only if i is bitwise less than j.

9.2 Combined shifting

The following elemental functions have been added for combined shifting. i and j are each of
type integer or a binary, octal, or hexadecimal constant. Let bsize be the bit size of this
kind of integer. The result is of type integer this kind. shift is of type integer with a value
in the range 0, 1, 2, . . . , bsize.

dshiftl (i,j,shift) has value equal to the rightmost bsize-shift bits of i followed by the
leftmost shift bits of j.

dshiftr (i,j,shift) has value equal to the rightmost shift bits of i followed by the leftmost
bsize-shift bits of j.

At least one of i and j must be integer. If they are both integer, they must have the same
kind.

9.3 Counting bits

The following elemental functions have been added for counting bits. i is an integer and the
result is a default integer.

leadz(i) returns the number of leading zero bits in i.

popcnt(i) returns the number of one bits in i.

poppar(i) returns the value 1 if popcnt(i) is odd and the value 0 otherwise.

trailz(i) returns the number of trailing zero bits in i.

9.4 Masking bits

The following elemental functions have been added for masking bits.

maskl(i[,kind]) returns an integer whose leftmost i bits are 1 and the rest are zero.

maskr(i[,kind]) returns an integer whose rightmost i bits are 1 and the rest are zero.

i is an integer.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 15

kind is a scalar integer initialization expression.

The result is of type integer and kind kind if kind is present and of type default integer

otherwise.

9.5 Shifting bits

The following elemental functions have been added for shifting bits.

shifta(i,shift) has the effect of shifting the bits of i to the right by shift places and
replicating the leftmost bit shift times in the vacated positions.

shiftl(i,shift) has the effect of shifting the bits of i to the left by shift places and changing
the rightmost shift bits to zero. It is the same as ishft(i,shift).

shiftr(i,shift) has the effect of shifting the bits of i to the right by shift places and
changing the leftmost shift bits to zero. It is the same as ishft(i,-shift).

i is an integer.

shift is a non-negative integer.

The result is of the same type and as i.

9.6 Merging bits

The following elemental function has been added for merging bits.

merge bits(i,j,mask) returns an integer that merges the bits of i and j under the control
of mask. One of i and j must be of type integer. If both are of type integer, they must
be of the same kind. One may be a binary, octal, or hexadecimal constant. mask is of type
integer and of the same kind as i or j, or is a binary, octal, or hexadecimal constant. A
bit of the result is the corresponding bit of i if the corresponding bit of mask is 1 and is
the corresponding bit of j otherwise.

9.7 Bit transformational functions

The following transformational functions have been added for bit operations.

iall(array,dim,[,mask]) or iall(array[,mask]) performs bitwise and operations.

iany(array,dim,[,mask]) or iany(array[,mask]) performs bitwise or operations.

16 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

iparity(array,dim,[,mask]) or iany(array[,mask]) performs bitwise exclusive or opera-
tions.

array is an integer array.

dim is an integer scalar.

mask conforms with array and is of type logical.

These functions are modeled on the transformational function sum, but use the operators of the
functions iand, ior and ieor instead of +. The result has the type and kind of array and the
shape is determined from the shape of array and the value of dim or its absence, just as for sum.
The operators are applied to all the elements of array to yield a scalar or to all the elements of
rank-one sections to yield a result of rank reduced by one.

10 Intrinsic procedures and modules

10.1 Storage size

storage size(a,[kind]) is an inquiry function returns an integer of kind kind if kind is
present or of default kind otherwise. It returns the storage size in bits of a scalar of the
dynamic type and kind of a, which may be a scalar or an array of any type.

10.2 Selecting a real kind

An additional optional argument radix has been added to selected real kind at the end of
the argument list. It is an integer scalar and it presence results in the search being limited to
a particular radix.

10.3 Hyperbolic intrinsic functions

The hyperbolic trigonometric intrinsic functions cosh, sinh, and tanh may have complex argu-
ments. Their inverses acosh(x), asinh(x), and atanh(x) have been added.

10.4 Bessel functions

The following are elemental functions have been added

bessel j0 (x) returns the Bessel function of the first kind and order zero for a real value x.

bessel j1 (x) returns the Bessel function of the first kind and order one for a real value x.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 17

bessel jn (n,x) returns the Bessel function of the first kind and order n for a real value x.
The argument n must be an integer with a nonnegative value.

bessel y0 (x) returns the Bessel function of the second kind and order zero for a real value x

that is positive.

bessel y1 (x) returns the Bessel function of the second kind and order one for a real value x

that is positive.

bessel yn (n,x) returns the Bessel function of the second kind and order n for real values x

that are positive. The argument n must be an integer with a nonnegative value.

In addition the functions bessel jn and bessel yn are overloaded with these transformational
functions

bessel jn (n1,n2,x) returns a rank-one array of Bessel functions of the first kind and or-
ders n1, n1+1, . . . n2 for real values x. The arguments n1 and n2 must be integers with
nonnegative values.

bessel yn (n1,n2,x) returns a rank-one array of Bessel functions of the second kind and
orders n1, n1+1, . . . n2 for real values x. The arguments n1 and n2 must be integers with
nonnegative values.

10.5 Tangent function

The intrinsic atan2 may be accessed by the name atan.

10.6 Error and gamma functions

The following elemental functions have been added

erf (x) returns the error function for a real value x, that is, 2√
π

∫

x

0
exp(−t2)dt.

erfc (x) returns the complementary error function for a real value x, that is, 1-erf(x) =
2√
π

∫ ∞
x

exp(−t2)dt.

erfc scaled (x) returns the exponentially-scaled complementary error function for a real value
x, that is, exp(x2) 2√

π

∫ ∞
x

exp(−t2)dt.

gamma (x) returns the gamma function for a real value x, that is,
∫ ∞
0

tx−1 exp(−t)dt.

hypot (x,y) returns the Euclidean distance function
√

x2 + y2 for real values x and y, without
undue overflow or underflow.

log gamma (x) returns the logarithm of the absolute value of the gamma function for a real
value x that is not a negative integer or zero.

18 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

10.7 Euclidean vector norms

The following are transformational function has been added.

norm2(x[,dim]) calculates Euclidean vector norms.

x is a real array.

dim is an integer scalar.

This function is modeled on the transformational function sum, but without the optional argu-

ment mask and replacing summation by calculation of the Euclidean vector norm
√

∑

x2

i
. The

result has the type and kind of x and the shape is determined from the shape of x and the value
of dim or its absence, just as for sum. The operators are applied to all the elements of x to yield
a scalar or to the elements of rank-one sections to yield a result of rank reduced by one. It is
recommended that the result be reasonably accurate even if computing some of the squares of
the elements would result in overflow or underflow.

10.8 Parity

The following transformational function has been added.

parity(mask[,dim]) tests for the number of true values being odd.

mask is a logical array.

dim is an integer scalar.

This function is modeled on the transformational function all, replacing the test for all values
being true with the test for the number of true values being odd. The result has the type and
kind of mask and the shape is determined from the shape of mask and the value of dim or its
absence, just as for all. The operators are applied to all the elements of mask to yield a scalar
or to the elements of rank-one sections to yield a result of rank reduced by one.

10.9 Execute command line

call execute command line(command[,wait,exitstat,cmdstat,cmdmsg]) starts execution of
another program if the processor supports command line execution.

command has intent in and is a scalar default character holding the command line to be
executed.

wait has intent in and is a scalar default logical. If present with the value false, and
the processor supports asynchronous execution of the command, the command is
executed asynchronously; otherwise it is executed synchronously.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 19

exitstat has intent inout and is a scalar default integer. If the command is executed syn-
chronously, it is assigned the value of the processor-dependent exit status. Otherwise,
the value is unchanged.

cmdstat has intent out and is a scalar default integer. It is assigned the value -1 if the
processor does not support command line execution, a processor-dependent positive
value if an error condition occurs, or the value -2 if no error condition occurs but
wait is present with the value false and the processor does not support asynchronous
execution. Otherwise it is assigned the value 0.

cmdmsg has intent inout and is a scalar default character. If an error condition occurs, it
is assigned a processor-dependent explanatory message. Otherwise, it is unchanged.

When the command is executed synchronously, the subroutine returns after the command line
has completed execution. Otherwise, it returns without waiting. If an error condition occurs
and cmdstat is not present, error termination of execution is initiated.

10.10 Location of maximum or minimum value in an array

The instrisics maxloc and minloc have had an additional optional argument back added at the
end of the argument list. The effect of its presence with the value true, is that if there is more
than one element that satisfies the condition, the last in array element order is taken instead of
the first.

10.11 Find location in an array

The following transformational function has been added

findloc(array,value[,mask,kind,back]) or

findloc(array,value,dim[,mask,kind,back]) finds the location in array of an element
with value value.

array is an array of intrinsic type.

value is a scalar of a type that may be used for intrinsic comparisons.

dim is a scalar integer.

mask conforms with array and is of type logical.

kind is a scalar initialization expression.

back is a scalar logical.

This function is modeled on the transformational function maxloc, replacing the search for a
maximum value with a search for the value value. The result has the type and kind of array
and the shape is determined from the shape of mask and the value of dim or its absence, just
as for maxloc. The search is applied to all the elements of array to yield a scalar or to the
elements of rank-one sections to yield a result of rank reduced by one.

20 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

10.12 Constants

The intrinsic module iso Fortran env contains these constants

character kinds is a default integer array holding the kind values supported by the processor
for variables of type character. Its size equals the number of kinds supported.

integer kinds is a default integer array holding the kind values supported by the processor
for variables of type integer. Its size equals the number of kinds supported.

logical kinds is a default integer array holding the kind values supported by the processor
for variables of type logical. Its size equals the number of kinds supported.

real kinds is a default integer array holding the kind values supported by the processor for
variables of type real. Its size equals the number of kinds supported.

int8, int16, int32, and int64 are default integer scalars holding the kind values for integers
of storage size 8, 16, 32, and 64 bits. If there is no such type, -2 is returned if there is a
type of larger storage size or -1 otherwise.

real32, real64, and real128 are default integer scalars holding the kind values for reals of
storage size 32, 64, and 128 bits. If there is no such type, -2 is returned if there is a type
of larger storage size or -1 otherwise.

iostat inquire internal unit is a default integer scalar holding the values returned in an
iostat= specifier in an inquire statement if the file unit number identifies an internal
unit (which can happen only during user-defined derived-type I/O).

10.13 Module procedures

The intrinsic module iso Fortran env contains these functions

compiler options is an inquiry function that returns a default character scalar that details
the options that the compiler was given.

compiler version is an inquiry function that returns a default character scalar that details
the name and version of the compiler used.

The intrinsic module iso C binding contains this function

C sizeof(x) is an inquiry function that returns an integer. If x is scalar, the result is the value
that the companion processor returns as the result of applying the C sizeof operator to
an object of a type that interoperates with the type and type parameters of x. If x is an
array, it is the result for an element multiplied by the number of elements.

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 21

11 Programs and procedures

11.1 Empty contains section

An empty contains section is permitted in a procedure or in a type definition.

11.2 Internal procedure as an actual argument

An internal procedure may be passed as an actual argument or be the target of a procedure
pointer, which permits it to be invoked from outside of its host. This will be very convenient
for users of library codes because the internal procedure may have access to any data accessible
in the host. We illustrate this with a procedure to calculate

∫

b

a
f(x)dx with the interface

interface

real function integrate(f, a, b) result(integral)

interface

real function f(x) ! Integrand

real, value :: x

end function

end interface

real, intent(in) :: a, b ! Bounds

end function integrate

end interface

Here it is being used in a function to calculate
∫

b

a
xndx:

real function my_integration(n, a, b) result(integral)

! Integrate f(x)=x^n over [a,b]

integer, intent(in) :: n

real, intent(in) :: a, b

integral = integrate(my_f, a, b)

contains

real function my_f(x) ! Integrand

real, value :: x

my_f = x**n ! n is taken from the host.

end function

end function my_integration

11.3 Generic resolution by pointer or allocatable attribute

A pair of specific procedures in a generic interface are permitted to be distinguishable by virtue
of a pointer argument of one corresponding to an allocatable argument of the other.

22 ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4)

11.4 Null pointer as a missing dummy argument

A null pointer that corresponds to an optional dummy argument is interpreted as an absent
argument.

11.5 Elemental procedures that are not pure

An elemental procedure is not required to be pure. This must be explicitly declared with the
prefix impure, for example,

impure elemental function accumulate (a,sum)

real :: accumulate

real, intent(in) :: a

real, intent(inout) :: sum

sum = sum + a

accumulate = sum

end function accumulate

may be use to replace the value of each in an array by the accumulated sum of elements in array
element order:

real a(n), sum

:

sum = 0.0

a = accumulate (a,sum)

12 Acknowledgements

I would like to express thanks to Aleksandar Donev, Nick Gould, Jim Giles, Jonathan Hogg,
Bill Long, Steve Morgan, and Dan Nagle for suggesting improvements.

13 References

ISO/IEC (2008). ISO/IEC JTC1/SC22/WG5 N1723. Committee Draft revision of the Fortran
Standard, ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1723.pdf

ISO/IEC (2004). ISO/IEC 1539-1:2004(E) Information technology - Programming languages
- Fortran - Part 1: Base language. ISO, Geneva.

ISO/IEC (2005). ISO/IEC TR 19767 Information technology - Programming languages -
Fortran - Enhanced Module Facilities. ISO, Geneva.

Reid (2008). ISO/IEC JTC1/SC22/WG5 N1724. Coarrays in the next Fortran Standard,
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1724.pdf

ISO/IEC JTC1/SC22/WG5 N1729-4(draft 4) 23

Metcalf, Michael, Reid, John, and Cohen, Malcolm (2004). Fortran 95/2003 explained. Oxford
University Press.

